PROCEEDINGS

THE 3rd INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS AND TELECOMMUNICATIONS (ICRAMET) 2014

May 7 & 8, 2014
Planet Holiday Hotel, Batam – Indonesia

Organize by:

LIPI
IEEE
Indonesia Microwave and Antenna Propagation Society
GRSS
AES
IRCTR-I

Sponsored by:
INFRA RCS
INDONESIA
Proceedings of the 3rd International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET) 2014

“Developing Regional and International Scientific Co-operations”

Editor
Mashury Wahab Yuyu Wahyu
Yadi Radiansah Purwoko Adhi
Syamsu Ismail Goib Wiranto

Technical Editor
Ken Paramayudha
Arie Setiawan
M. Tajul Miftahushudur
Prasetyo Putranto
Fadil Habibi Danufane

Layout and Cover
Dicky Desmunandar

ISSN : 1979-2921

Published by:
Research Center for Electronics and Telecommunication
Indonesian Institute of Sciences
Kampus LIPI Jl. Sangkuriang Bandung 40135
Phone : +62 22 2504660
Fax : +62 22 2504659
Website : www.ppet.lipi.go.id
COMMITTEE

Advisory Chair
Prof. Dr. Lukman Hakim, LIPI Chairman

Steering Committee
Syahrul Aiman, LIPI
Hiskia, LIPI
Mashury Wahab, LIPI
Yuyu Wahyu, LIPI
Goib Wiranto, LIPI
Purwoko Adhi, LIPI
Syamsu Ismail, LIPI
Rr. Widhya Yusi S, LIPI
Hammam Riza, BPPT
Arwin D.W. Sumari, MABES AU
Edy Siradj, Balitbang Kemhan
A. Andaya Lestari, IRCTR-I
Endon Bharata, IRCTR-I
Josaphat Tetuko S.S., Chiba Univ.
Raja Syamsul Azmir A., UPM Malaysia
Eko Tjipto Raharjo, UI
Fitri Yuli, UI
Andriyan B. Suksmono, ITB
Nana Rachmana, ITB
Adit Kurniawan, ITB
Sholeh Hadi P, UNIBRAW

Technical Program Committee

Chairman
Yadi Radiansah

Vice Chairman
Zaenul Arifin

Secretariat
Lisdiani
Poppy Sumarni

Finance Division
Wawat Karwati

Program Division
Emil Kristanti
Ratna Dwi Novitasari

Publication Division
Ken Paramayudha
Dicky Desmunandar
Prasetyo Putranto
Arie Setiawan
Fadil Habibi Danufane
M. Tajul Miftahushudur

Documentation & Exhibition Division
Endang Ridwan
Nani Haryati
Patricius Sriyono

Equipment & Transportation Division
Anna Kristina T
Sarip Hidayat Umaran
Sugiantoro
Aseni
PREFACE

On behalf of the Chairman Organizing Committee of The 3rd International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET) 2014, I would like to thank to all the participants for their participation during the Conference that was held in Batam on May 7 - 8, 2014. We also would like to thank for their contributions to the Conference program and for their contributions to these Proceedings.

I would like to specifically express my gratitude to the Chairman of Indonesian Institute of Sciences (LIPI) Prof Dr. Lukman Hakim, who was officially opened the Conference. To the distinguished speakers : Dr. Teguh Rahardjo, advisor to the Minister of Research and Technology for Defense and Security Affairs; Dr. Timbul Siahaan, directorate general of defense potential, Ministry of Defense Republic of Indonesia; and Mr. Ali Nasheer Ahmadi from Iran Electronics Industries.

This proceeding consists of 40 scientific papers. Some of these papers were presented as oral presentations, and the rests were presented as poster presentations. This Conference would not be hold successfully without contribution of the Speakers, the Authors, the Advisory Committees, and the members of the Organizing Committees. Therefore, I would like to take this opportunity to express my sincere appreciation to all of them for their active participation in The 3rd International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET) 2014.

Bandung, June 5th 2014

Chairman of the Organizing Committee

Yadi Radiansah
LIST OF PAPERS

1. Adjacent Interference Analysis in GSM Network at Purba Lingga Area (*Alfin Hikmaturokhman, Eka Wahyudi and Khoirun Ni’amah*) ... 1

4. Design on Multi-Coupled Ring-Resonators of Interleave Filter with Large Free-Spectral Range by Applying The Vernier Effects (*D. Mahmudin, Y. Taryana and N. Armi*) ... 15

5. Simulation of Stacked Patch Antenna by Moment of Method (*Dian Tresnawan*) .. 18

6. Total Electron Content Data Correction Using Interpolation And Shifting (*Dwiko Unggul Prabowo, Timbul Manik and Peberlin Sitompul*) ... 21

7. Design Hairpin Bandpass Filter at 400 MHz for DDS Clock on Radar System (*Fajri Darwis and Taufiqurrachman*) ... 24

8. Picocell Antenna in 3-Band Global System for Mobile Communication (*Folin Oktafiani and Yussi Perdana Saputera*) ... 28

9. The Comparison of a Pulse Electromagnetic Field Effect on CaCl\(_2\) and FeSO\(_4\) Solutions (*Hanif Fakhkurroja, Hariyadi and Novan Agung Mahardiono*) ... 33

10. Design and Development of A Temperature Control System for Catfish Spawning (*Hanif Fakhkurroja and Hariyadi*) ... 38

11. Dye-sensitized Solar Sub-Modules (*Lia Muliani, Jojo Hidayat and Lilis Retnaningsih*) ... 42

12. Proposing Two SLC Structures Based on NLMS and RLS for Improving ECCM Capability of Array Radar (*M.H Ghamat, B.Abbasi and Sh. Salemian*) ... 46

13. Designing High PRF Pulsed-Doppler Radar Using Robust Chines Remainder Theorem (*Mohsen Askari, Shamsollah Salemian, and Bijan Abbasi Arand*) ... 51

15. Image Processing Using Mathematical Morphology to Enhance Result of Surveillance Radar Imaging (*Vicky Zilvan and Octa Heriana*) ... 63

16. Tri-Band Ring Square Slot Using Parasitic Element (*Indra Surjati, Yuli Kurnia Ningsih and Rastanto Hadinegoro*) ... 67
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Application of SMT Filter on The FMCW Technology Radar System for Maritime Purpose (Sri Hardiati and Topik Teguh Estu)</td>
<td>..</td>
<td>72</td>
</tr>
<tr>
<td>18</td>
<td>Using of the Okumura-Hata Propagation Model for Pathloss Determination in Tarakan (Syahfrizal Tachfulloh)</td>
<td>..</td>
<td>77</td>
</tr>
<tr>
<td>19</td>
<td>Design and Implementation Resonator Spurline L-Type at Frequency 2.4GHz</td>
<td>(Taufiqurrachman, Fajri Darwis, I Dewa Putu Hernida and Deni Permana)</td>
<td>80</td>
</tr>
<tr>
<td>20</td>
<td>Design and Simulation of Bandpass Filter Microstrip Using Hairpin Method with Seven Resonators (Teguh Praludi, Iqbal Syamsu and Bagus Edy Sukoco)</td>
<td>..</td>
<td>85</td>
</tr>
<tr>
<td>21</td>
<td>Development of Space Weather Observation System in Radio-Frequency-Based Using Callisto (Timbul Manik, Peberlin Sitompul and Dwiko Unggul Prabowo)</td>
<td>..</td>
<td>89</td>
</tr>
<tr>
<td>22</td>
<td>Characterization of Barrium Ferrite Permanent Magnet for Circulator Components Working at S Band (2.45 GHz – 4.00 GHz) (Tony Kristiantoro, Nanang Sudrajat, Novrita Idayanti and Asep Yudi Hercuadi)</td>
<td>..</td>
<td>94</td>
</tr>
<tr>
<td>23</td>
<td>Application of The Hairpin Microstrip Band Pass Filters 456 MHz for FMCW Radar Systems (Topik Teguh Estu, Sulistyaningsih and Sri Hardiati)</td>
<td>..</td>
<td>98</td>
</tr>
<tr>
<td>24</td>
<td>Frequency Selection Analysis of Long Term Evolution (LTE) Technology in Indonesia (Uke Kurniawan Usman and Galuh Prihatmoko)</td>
<td>..</td>
<td>103</td>
</tr>
<tr>
<td>25</td>
<td>UMTS/HSPA Network KPI Value Optimization Analysis in UMTS State Transformation Feature Activation (Defika Fianti, Uke Kurniawan Usman and Yuyun Siti Rohmah)</td>
<td>..</td>
<td>107</td>
</tr>
<tr>
<td>26</td>
<td>Image Processing using Median Filter to Minimize Noise of Surveillance Radar Imaging (Octa Heriana and Vicky Zilvan)</td>
<td>..</td>
<td>113</td>
</tr>
<tr>
<td>27</td>
<td>Digital Modulation Simulation Through AWGN Channel and Rayleigh Fading Channel Using Phase Shift Keying Modulation (Anggun Fitrian Isnawati, Wahyu Pamungkas and Abny Irawan)</td>
<td>..</td>
<td>116</td>
</tr>
<tr>
<td>28</td>
<td>Intercomparison of Ceilometer and Mie lidar Retrievals for Aerosol and Cloud Height Over Kototabang, Indonesia (Wendi Harjupa and Syafrijon)</td>
<td>..</td>
<td>121</td>
</tr>
<tr>
<td>29</td>
<td>Two Stage Low Noise Amplifier 3 GHz using Non Simultaneous Conjugate Match Technique (Yana Taryana, Achmad Munir, Yaya Sulaeman and Suhana Hermana)</td>
<td>..</td>
<td>125</td>
</tr>
<tr>
<td>30</td>
<td>High Gain Low Noise Amplifier 9.4 GHz for Radar Application using Microstrip Line Matching Network (Yana Taryana, Yaya Sulaeman, Nasrullah Armí and Mashury Wahab)</td>
<td>..</td>
<td>132</td>
</tr>
<tr>
<td>31</td>
<td>Bandwidth Enhancement of Rectangular Microstrip Patch Antenna Using Electromanetically Coupled Technique for Wimax Applications (Yudi Yuliyus Maulana, Yuyu Wahyu, Folin Oktafiani and Fadil Habibi Danufane)</td>
<td>..</td>
<td>136</td>
</tr>
<tr>
<td>32</td>
<td>Design and Simulation 4 x 1 Wilkinson Combiner / Power Divider for Application of LPI Radar X-Band Frequency with Impact of Casing (Yussi Perdana Saputera, Arif Budi Santiko, Taufiqurrachman and Mashury Wahab)</td>
<td>..</td>
<td>141</td>
</tr>
</tbody>
</table>
33. Surface Acoustic Wave (SAW) Device Application as Mercury Sensor (Grace Mambu, Goib Wiranto) .. 147

34. Hybrid Polymer Solar Cell Based on Nanocrystalline Zinc Oxide and Poly (Phenylene Vinylene) Blend (Erlyta Septa Rosa, Shobih, and Muhammad Amiruddin) ... 151

35. Microstrip Antenna Side Lobe Suppression Using Left-Handed Metamaterial Structure (Fitri Yuli Zulkifli, Pamela Kareen, Basari and Eko Tjipto Rahardjo) ... 155

37. Study of Fabrication of Dye-Sensitized Solar Cells with Spray Coated Carbon Nanotube (CNT) Based Counter Electrodes (Slamet Widodo, Goib Wiranto, Lilis Retnaningsih, I Dewa Putu Hermida and Mirza Nur Hidayat) ... 164

38. Noise Cancellation of Recorded EEG using Robust Principal Component Analysis (Arjon Turnip, Dwi Esti Kusumandari and Hanif Fakhurroja) ... 170

39. Integrated of Advanced Oxidation Processes with Reverse Osmosis for Water Treatment (Arjon Turnip, Demi Soetraprawata, and Sutrisno Salomo Hutagalung) ... 173

40. Development of Peat Water Treatment Technology based Advanced Oxidation Processes with O3-UV-H2O2 (Sutrisno Salomo Hutagalung, Imamul Muchlis, and Arjon Turnip) ... 177
Simulation of Stacked Patch Antenna by Moment of Method

Dian Tresnawan, B.Eng., M.Eng
Program Studi Teknik Elektro, Falkutas Elektronika Industri
Universitas Internasional Batam
Jl. Gajah Mada, Baloi, Sei Ladi Batam 29442
Email: dtresnajp@yahoo.ac.jp

Abstract—Nano Technology advances provide a larger effect on the development of the electronics world, as we have known that electronic products getting small and smaller in dimensions with high reliability for example handphone. Antenna as supporting the advancement of Telecommunication world growth fast also, in this research focusing in Microstrip antenna for communication application. Microstrip antenna application is very wide from wireless communication, imaging and sensor. The bandwidth of microstrip antenna is quite wide but not enough wide to cover several frequencies that separated too far. In this study applied a case study making a wifi antenna of (802.11a/g) that can operate both at 2.4GHz and 5GHz. The structure of antenna element is rectangular and will be design to work at 2.4GHz, and parasitic element to cover 5GHz. The design of Microstrip antenna is to put parasitic element above the antenna element, the width of antenna element is 85mm, Gap between Ground Plate and Element Antenna is 5.3mm and parasitic element’s wide is 62.7mm and varying the heigh of parasitic element are 10.6mm, 15.9mm. The result of study shows that the Antenna can covered 2 different bandwidth, but addition Parasitic Element at the antenna Structure does not give significant change to bandwidth.

Key Words: Microstrip Antenna, Antenna Element, Parasitic Element

I. INTRODUCTION

Telecommunication advances provide a larger effect on society, wireless communication become popular. For daily activity for example handphone until security systems, recently at many public area we can found wifi area easily. In security system area a sensor is commonly use. Either Handphone or sensor there are wireless communications that must be need an Antenna as communication tools.

Antenna as supporting the advancement of Telecommunication world growth fast also, many type of antenna can be design depend on the purpose on it. In this study focusing in Microstrip antenna for communication application.

Microstrip antenna application is very wide from wireless communication, imaging and sensor. The bandwidth of microstrip antenna is quite wide but not enough wide to cover several frequencies that separated too far [3]. To cover that problem one solution is to put parasitic element above the antenna element. By doing this, we can increase variations of current distribution besides antenna element which give the result of broaden the operation frequency as well as the bandwidth.

In this study take a case for a wifi antenna of (802.11a/g) that can operate both at 2.4GHz and 5GHz.

II. LITERATURE REVIEW

The Moment of Method (MoM) is method are usually used to solved the problem for linear equations, in this study the method are used as follows;

1. MoM in general
 If we have linier system equation as below
 \[L(f) = g \] (1)
 Where:
 \(g \) : known function
 \(f \) : unknown to be determined
 \(L \) : Linier operator

 To determine unknown \(f \) function we need to discretized as below
 \[f = \sum_n \alpha_n f_n \] (2)
 Where:
 \(\alpha_n \) : constant value
 \(f_n \) : expansion function

 From equation above we get,
 \[\sum_n \alpha_n L(f_n) = g \] (3)
 If we take inner product with test function \(w_m \) we can get,
\[
\sum_n a_n (w_{m}, L_{fa}) = (w_{m}, g)
\]
(4)

We can rewrite equation above as bellow,
\[
[I_{mn}] [a_n] = [g_m]
\]
(5)

Where,
\[
[I_{mn}] = \begin{bmatrix}
(w_1, L_{f1}) & (w_1, L_{f2}) & \cdots \\
(w_2, L_{f1}) & (w_2, L_{f2}) & \cdots \\
\vdots & \vdots & \ddots
\end{bmatrix}
\]
(6)

\[
[a_n] = \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots
\end{bmatrix}, \quad [g_m] = \begin{bmatrix}
g_1 \\
g_2 \\
\vdots
\end{bmatrix}
\]
(7)

Finally by taking invers matrix we can obtain constant value \(\alpha\) as below.
\[
[a_n] = [I_{mn}]^{-1} [g_m]
\]
(8)

I we have obtained \(\alpha\), then we can determine function \(f\).

2. MoM Formulation Patch Antenna

To obtain current distribution on the antenna via numerical analysis of the moment of method we use equation (9) ~ (12). After discretization of equation (10) and (11), and differentiating equation (9), we substitute them to equation (12). By solving linear system of equation (12) we can get current distribution on antenna [1][2].

\[
-j \omega \rho = \nabla \cdot J
\]
(9)

\[
\phi(r) = \frac{1}{4\pi\epsilon} \iiint \rho(r') \frac{e^{-jk|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{x} \, d\mathbf{y}
\]
(10)

\[
A(r) = \frac{1}{4\pi\epsilon} \iiint J(r') \frac{e^{-jk|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{x} \, d\mathbf{y}
\]
(11)

\[
-E^t(r) = -j \omega A(r) - \nabla \phi(r)
\]
(12)

From current distribution on the antenna we can obtain input impedance characteristic, return loss, directivity gain of the antenna.

III. SIMULATION MODELS

We assumed that patch antenna element is perfect conductor and very thin. Please see figure below for antenna model. The structure of antenna element is rectangular and will be design to work at 2.4GHz, and parasitic element to cover 5GHz. For antenna structure please see fig. 1.

Antenna dimension estimation,
- Design of rectangular microstrip antenna:
 Frequency (fr) = 2.4GHz
 Material \(\varepsilon_r\) = 1 (air)
 Thickness = 0.4mm

We can use formula bellow to determine dimension of rectangular patch antenna [4][5].

\[
f_r = \frac{v_0}{2 \alpha_{eff} \sqrt{\varepsilon_r}}
\]
(13)

\[
\alpha_{eff} = \frac{1 + 0.824 t}{\varepsilon_r} \left(\frac{\varepsilon_r + 0.3}{\varepsilon_r - 0.258} \right) \left(\frac{1}{\varepsilon_r + 0.262} \right)
\]
(14)

\[
\varepsilon_r = \frac{\varepsilon_r + 1}{2} + \frac{t}{2} \left(1 + \frac{t}{\alpha} \right)
\]
(15)

By substituting \(\varepsilon_r\), t (thickness), we find that the width of antenna element is 85mm.

Gap between Ground Plate and Element Antenna is 5.3 mm, based on calculation and simulation shown that 5.3 mm was the right point to get oscillation at frequency 2.4 GHz. In this study we use 3 models of simulation, 1st model apply Ground Plate and Element Antenna. 2 models apply Ground Plate, Element Antenna and parasitic element and varying the height of parasitic element.

IV. RESULT OF SIMULATION AND ANALYSIS

Figure 2. shows the result of simulation for 3 models, where each model have specification as follows;
Series 1 : rectangular antenna with wide of 85.5mm and gap 5.3mm without parasitic element.
Series 3 : rectangular antenna with wide of 85.5mm and gap 5.3mm And parasitic element wide of 62.7mm and parasitic height 10.6mm
Series 5 : rectangular antenna with wide of 85.5mm and gap And parasitic element wide of 62.7mm and parasitic height 15.9mm
Figure 2. Result of Simulation

X axis is frequency in GHz, Y axis is dB. Based on figure 2 shows that 2 bandwidth can be covered by using the antenna models (2.4 GHz and 3.1 GHz).

IV. CONCLUSION

In this simulation parasitic element does not give significant change to bandwidth. However, the antenna has 2 bandwidth, one is at 2.4GHz and other at 3.1GHz. We assumed that width of feeder give significant contribution with bandwidth.

Next Research how to design Antenna Structure which covered more than 2 bandwidth.

REFERENCES

