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ITISE 2018 Preface

Preface

We are proud to present the set of final accepted papers for the fourth edition of the ITISE
2018 conference ”International work-conference on Time Series” held in Granada (Spain) during
September, 19-21, 2018.

The ITISE 2018 (International work-conference on Time Series) seeks to provide a discussion
forum for scientists, engineers, educators and students about the latest ideas and realizations in
the foundations, theory, models and applications for interdisciplinary and multidisciplinary re-
search encompassing disciplines of computer science, mathematics, statistics, forecaster, econo-
metric, etc, in the field of time series analysis and forecasting.

The aims of ITISE 2018 is to create a friendly environment that could lead to the establish-
ment or strengthening of scientific collaborations and exchanges among attendees, and therefore,
ITISE 2018 solicits high-quality original research papers (including significant work-in-progress)
on any aspect time series analysis and forecasting, in order to motivating the generation, and
use of knowledge and new computational techniques and methods on forecasting in a wide range
of fields.

The list of topics in the successive Call for Papers has also evolved, resulting in the following
list for the present edition:

1. Time Series Analysis and Forecasting.

• Nonparametric and functional methods

• Vector processes

• Probabilistic Approach to Modeling Macroeconomic Uncertainties

• Uncertainties in forecasting processes

• Nonstationarity

• Forecasting with Many Models. Model integration

• Forecasting theory and adjustment

• Ensemble forecasting

• Forecasting performance evaluation

• Interval forecasting

• Econometric models

• Econometric Forecasting

• Data preprocessing methods: Data decomposition, Seasonal adjustment, Singular
spectrum analysis, Detrending methods, etc.

2. Advanced method and on-Line Learning in time series.

• Adaptivity for stochastic models

• On-line machine learning for forecasting

• Aggregation of predictors

• Hierarchical forecasting

• Forecasting with Computational Intelligence

• Time series analysis with computational intelligence
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• Integration of system dynamics and forecasting models

3. High Dimension and Complex/Big Data.

• Local Vs Global forecast

• Techniques for dimension reduction

• Multiscaling

• Forecasting Complex/Big data

4. Forecasting in real problem.

• Health forecasting

• Telecommunication forecasting

• Modelling and forecasting in power markets

• Energy forecasting

• Financial forecasting and risk analysis

• Forecasting electricity load and prices

• Forecasting and planning systems

• Real time macroeconomic monitoring and forecasting

• Applications in: energy, finance, transportation, networks, meteorology, health, re-
search and environment, etc.

After a careful peer review and evaluation process (each submission was reviewed by at
least 2, and on the average 3.2, program committee members or additional reviewer). In this
proceedings we are presetting the abstract of the contribution to be presented during ITISE-
2018 (accepted for oral, poster or virtual presentation,according to the recommendations of
reviewers and the authors’ preferences).

In this edition of ITISE, we are honored to have the following invited speaker:

1. Prof. Dr. Peter M Robinson , Tooke Professor of Economic Science and Statistics De-
partment of Economics, London School of Economics .

2. Prof Andrew C. Harvey, Emeritus Professor of Econometrics in the Faculty of Economics,
University of Cambridge, and a Fellow of Corpus Christi College.

3. Prof. Salah Bourennane, Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel,
Marseille, France.

4. Dr Karsten Webel, Deutsche Bundesbank, Central O�ce, Directorate General Statistics
Germany.

5. Prof. Dr. Robert Kunst, Professor of Economics at the University of Vienna and a�liated
with the IHS (Institute for Advanced Studies) .

6. Prof. Dr. Uwe Hassler, Applied Econometrics and International Economic Policy. Goethe
University Frankfurt .
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During ITISE 2018 several Special Sessions will be carried out. Special Sessions will be a
very useful tool in order to complement the regular program with new and emerging topics of
particular interest for the participating community. From the organization of ITISE, we would
like to thank deeply the great work that the organizers of Special Sessions do. Thank you very
much for your great e↵ort and interest.

Special Sessions that emphasize on multi-disciplinary and transversal aspects, as well as
cutting-edge topics are especially encouraged and welcome. and in this edition of ITISE 2018
are the following:

1. Forecasting Evolution, Prof. Philip Gerrish, School of Biology, Georgia Institute of
Technology, 310 Ferst Dr, Atlanta, GA 30332 .

2. Forecasting Climate Weather and Operation Impact on Reliability, Safety and Resilience of
Critical Infrastructures, Prof. Krzysztof Kolowrocki, Gdynia Maritime University, Poland,
and Prof. Joanna Soszynska-Budny, Gdynia Maritime University, Poland

3. Applications of time series for hydro-climatic data, Prof. Bruno Remillardi, Professor at
HEC Montral. Consultant at the National Bank of Canada and Prof. Bouchra R. Nasri .

4. Times series analysis in geosciences, Prof. Eulogio Pardo-Igzquiza, Professor at Instituto
Geolgico y Minero de Espaa (IGME) and Prof. Francisco Javier Rodrguez-Tovar, Depart.
Estratigrafa y Paleontologa, University of Granada, Spain.

5. Forecasting in High Dimension and Complex/Big Data , Prof. Dr. Luis Javier Herrera
and Prof. Dr. Ignacio Rojas , Dep. Computer Architecture and Computer Technology,
University of Granada, Spain

6. Quantum Computing, Prof. Peter Gloesekoetter, Fachbereich Elektrotechnik und Infor-
matik, Stegerwaldstrae 39, 48565 Steinfurt, Germany. and Dr. Bernd Burchard, Elmos
Semiconductor AG, Germany.

7. Computational Intelligence methods for Time Series, Prof. Dr. Hctor Pomares , Dep.
Computer Architecture and Computer Technology, University of Granada, Spain and
Prof. Dr. German Gutierrez , Dep. Computer Science, E.P.S. University Carlos III of
Madrid, Spain

8. Structural Time Series Models, Prof. Dr. Fernando Rojas , Dep. Computer Architecture
and Computer Technology, University of Granada, Spain

9. Recent Developments on Time-Series Modelling, Prof. Dr. Olga Valenzuela, Applied
Mathematics, University of Granada, Spain

10. Expert Systems with Time Series - Data, Prof. Dr. Kalle Saastamoinen , Department of
Military Technology, National Defence University,Helsinki, Finland

11. Spatio-temporal brain dynamics in attention tasks, Prof. Dr. Juan Manuel Grriz , Uni-
versity of Granada, Spain, and Prof. Dr. Pedro A. Valdes-Sosa , Cuban Neurosciences
Center and Prof. Dr. Csar Germn Castellanos Dominguez , Universidad Nacional de
Colombia

This new edition of ITISE was organized at the Universidad de Granada, with the help of the
Spanish Chapter of the IEEE Computational Intelligence Society and Spanish Network Time
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Series (RESET). We wish to thank to our main sponsor the institutions Faculty of Science,
Dept. Computer Architecture & Computer Technology and CITIC-UGR from the University
of Granada for their support. We wish also to thank to the Dr. Veronika Rosteck and Dr.
Eva Hiripi, Springer, Associate Editor, for their interest in the future editing a book series of
Springer from the best papers of ITISE 2018.

We would also like to express our gratitude to the members of the di↵erent committees and
to the reviewer for their support, collaboration and good work.

September, 2018
Granada

ITISE Editors and Chairs
Olga Valenzuela
Fernando Rojas
Hector Pomares

Ignacio Rojas
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Higor Henrique Aranda Cotta, Valdério Reisen, Pascal Bondon and Celine Levy-Leduc

Penalty terms for estimation of ARMA models: A Bayesian inspiration . . . . . . . . . . . . . . . . . . . 54

Helgi Tómasson
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FPGA-based accelerator design for Echo-State networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

Josep L Rossello, Miquel L. Alomar, Erik Sebastian Skibinsky Gitlin, Christiam F
Frasser, Vicente Canals, Eugeni Isern, Fabio Galan Prado, Alejandro Morán and
Miquel Roca

Stacked LSTM Snapshot Ensembles for Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 895

Sascha Krstanovic and Heiko Paulheim

Econometric models (Part.II )

12



ITISE 2018 Table of Contents

Implications for Aggregate Inflation of Sectoral Asymmetries: an empirical application . . . 907

Hannu Koskinen and Jouko Vilmunen

Testing for Di↵erences in Forecast-Error Dynamics in Path Forecasts . . . . . . . . . . . . . . . . . . . . . 920

Andrew Martinez

What can drive economic growth in Russia? Mid-term growth scenarios . . . . . . . . . . . . . . . . . . 921

Svetlana Balashova, Vladimir Matyushok and Inna Lazanyuk

Determining the cointegration rank using a Residual-based Procedure . . . . . . . . . . . . . . . . . . . . 933

Antonio Aznar

Quantum Computing

Point Function Analysis and a Hypothesis on the Origin of Quantum Mechanics . . . . . . . . . . 952

Bernd Burchard

Structural Time Series Models

Dynamic Bayesian smooth transition autoregressive models applied to hourly electricity
load in southern Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966

Alvaro Faria and Alexandre Santos

CP-based cloud workload annotation as a preprocessing for anomaly detection using
deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982

Gilles Madi Wamba and Nicolas Beldiceanu

Time series modelling with MATLAB: the SSpace toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994

Diego J. Pedregal, Marco A. Villegas, Diego Villegas and Juan R. Trapero

Multivariate INAR processes - Periodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
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Forecasting health of complex IT systems using system log data . . . . . . . . . . . . . . . . . . . . . . . . . . 1460

Shivshanker Singh Patel

Forecasting Complex/Big data (Part.II )

Comparing linear and non-linear dynamic factor models for large macroeconomic datasets 1468

Alessandro Giovannelli and Marina Khoroshiltseva

Simultaneous Multi-Response Multi-Covariate Best Subset Selection- with application
to fault modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1469

Aaron Lowther, Matt Nunes, Paul Fearnhead and Kjeld Jensen

A comparison of statistical methods for estimating individual location densities from
smartphone data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1471

Francesco Finazzi and Lucia Paci

Financial Forecasting and Risk Analysis

Forecasting of Multiple Yield Curves Based on Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 1483

Eva Lütkebohmert, Christoph Gerhart and Marc Weber

Empirical evaluation of advanced oversampling methods for improving bankruptcy
prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1495

Wedyan Alswiti, Hossam Faris, Huthaifa Aljawazneh, Salah Al-Deen Safi, Pedro
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Abstract. The dynamics of the national road service level in Indonesia was quite 
high. There is a significant difference between segments and different areas, even 
within the same area there is a different variation of level service. These condi-
tions encourage the Directorate General Highway to make up a new concept, by 
doing a long segment contract that handles national road in a single integrated 
contract. However, the limited budget and the poor handling of distribution pat-
tern will cause a bad implementation of a long segment contract.  Two-objective 
optimization models consider maximum Performance Index and minimum 
maintenance cost. The study was conducted on the entire national road network 
in the Jakarta Metropolitan 1 are paved with the flexible pavement. In the pro-
posed approach, data mining models are used to predicting the performance index 
over a given period of time. Preventive maintenance is chosen in this study. 
Multi-objective optimization models were developed based on the Simplex 
Method. The limited budget and effective targets are the two constraints in the 
developed models. Based on the R-Tools result, the optimal solutions of the two 
objective functions are Obtained. From the optimal solutions represented by in-
dex performance and cost, an agency more Easily Obtain the information of the 
maintenance planning. The result of the proposed development models can pro-
vide the optimal budget distribution for each segment in a long segment contract. 

Keywords: Data Mining, Long Segment, Preventive Maintenance, Perfor-
mance Index 

1 Introduction 

The road network is planned, constructed and maintained to facilitate transportation 
with safe, comfortable, and efficient. To realize these goals, within a recent decade’s 
pavement management system continues to be developed. For example, the United 
States developed a pavement management system through the American Association 
of State Highway Officials (AASHO) in the late of 1950s [1]. At that time not only, the 
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developed countries are to develop a pavement management system. Through the help 
of the World Bank, pavement management systems in the developing countries still 
continues to be improved by developing the Highway Development and Management 
(HDM) since 1966. On the development progress, HDM calibrated according to the 
conditions and standards that apply in each country. Since 1994 until now HDM-4 was 
developed to respond to the global demands in the road sector which are complex, in-
cluding pathway safety, environment, and energy, beside to the management aspect [2]. 

Over time, the purpose of a pavement management system continues to branch out. 
At the first stage, the government as the organizer of the road continues to increase the 
functional capacity of the pathway. But currently beside to increase the capacity of the 
pathway, pathway organizers must meet the higher expectations of road users in the 
form of comfort, convenience, and security. Related to the organizers of the main road 
and all stake holders should continue to develop themselves to maintain, expand and 
improve the performance of the network system of the existing road. One step to achiev-
ing this purpose need a better management system so all the existing resources can be 
optimized. Through the current approaches was assisted by modern mathematics and 
computer technology, the budget allocation as one of the resources for the improvement 
of the road pavement management system that can be implemented more efficiently 
[3]. 

Pavement management system is done in sustainable, begin from design, planning, 
construction, operation, maintenance, to control. All stages in the cycle of pavement 
management system have a role that all was important. Stages of pavement manage-
ment system have a significant effect in maintaining the performance of the road if done 
continuously over a long period [4]. It is influenced by the nature and character of the 
road pavement structure can be patterned with different approaches of data and other 
historical records. 

In its development through the process of testing implementations, Directorate Gen-
eral of Highway (DGH) Indonesia to implement the Long Segment Maintenance Con-
tracts (LSMC) in 2015 as a way to improve the standard of maintenance and replacing 
the self-management approach based on direct labor applied. These contracts include 
elements of compensation results is fundamental in the approach of Performance Based 
Maintenance Contract (PBMC) but the duration is shorter. Therefore, some of the dif-
ficulties associated with the contract form like PBMC can be avoided. It is expected 
with this LSMC, pavement management system in Indonesia is getting better. The 
performance of the main road became the main parameter in measuring the sustainabil-
ity of LSMC requires a special attention. 

Performance may be reduced in proportion to the increasing age of the pavement 
and the traffic load [5]. In general, the age of the pavement is determined based on the 
cumulative equivalent standard axle (CESA) is expected across the road pavement, it 
was calculated from the start of the road pavement constructed, operated until the pave-
ment is categorized as damaged (end ages of the plan). The decline in overall road 
performance of the function increase traffic volume and traffic load, changes of envi-
ronmental conditions, as well as other conditions [6].  

Basically, the road pavement structural function can decrease with age. However, 
the function of pavement on the road network often suffer a structural damage prior to 
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the age of the plan is achieved, due to various conditions during the operation. One of 
the phenomena that is common in developing countries is overloaded [7]. The condition 
occurs continuously without can be prevented.  Due to limited modes of transport as 
well as the purpose of minimizing the transport cost that caused the road damage occurs 
sooner. 

Before the damage reaches a lower layer, an indication of damage initiated by sur-
face damage. The level of flatness and surface roughness change with road perfor-
mance. The roughness of road is an important indicator because it directly affects the 
driver and the vehicle. The number or index flatness related to the amplitude and fre-
quency distortion pavement, the suspension characteristics of the vehicle, and the ve-
hicle speed. The condition of the road that is not a good flatness can reduce speed, 
causing potential damage to the vehicle, increasing the operating costs, and increase 
exhaust emissions [6]. 

The decline in road performance did not take place in real time, but gradually follow 
a function of time and a time series. The speed and shape changes in performance have 
certain patterns and trends. The collection of large amounts of data, it is necessary to 
be able to produce a good pattern and continuous [8]. Approach to new techniques and 
the use of the latest technology is necessary so that a set of data that has been collected 
through measurement Performance Index (PI) can be utilized in a structured and scala-
ble to support pavement management system better roads through the interpretation and 
prediction of accurate data.  

2 Study Literature 

2.1 Long Segment Maintenance Contract 

One of the difficulties divert the implementation of routine maintenance to the private 
sector in the short term is the lack of capacity of road contractors to handle the new 
load work. To support the contractor to take over the routine maintenance tasks, since 
the beginning of the LSMC was designed to reduce the risks and the financial exposure 
for the contractor to limit the term of the contract becomes one to three years; handling 
and great improvement work is determined by the DGH; using low-risk pricing struc-
ture with a combination of lump sum payments and the payments that adjust as PI for 
routine maintenance (similar to PBMC) and a payment schedule based on the rates for 
major maintenance work. 

This LSMC is a milestone for achieving steady PBMC, by the way doing a new 
approach to the management of pavement without prejudice to the responsibility of the 
organizers of the road but changed the focus of the responsibilities organizers of the 
road radically. In a performance-based contract, the organizers do not need to set any 
details on how the contractor to achieve the desired results. The Road organizers will 
be required to be able to define the problem clearly, develop a methodology for deter-
mining acceptable performance indicators and measured in accordance with the mis-
sion of the organizers of the road, as well as developing objective performance evalua-
tion system. Determination of performance indicators not only require engineering ex-
pertise micro multi fields but also can path the achievement of realistic macro indicators 
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such as implied in the mission of the organizers of the road. The large projects with 
strong competition, long duration and extension periods, long outsourced road sections 
that incorporate crack sealing, pothole repair, illumination repair/maintenance, and 
mowing activities, favor outsourcing under PBC [9]. 

LMSC requires a culture shift service provider. Technical capability and innovation 
service providers in order to be competitive. The pattern of construction services busi-
ness will also change with the increasing integration of the stages of design, construc-
tion, operation and maintenance. LSMC also requires a change in the culture of service 
users, given that most risks can occur due to the behavior of service users. Many as-
sumptions used in the design of roads and bridges being care through various traffic 
regulation on road transport. One important example is the traffic loading. Disobedi-
ence of road users on the rules on Heaviest Loads axis (HLA) will cause uncertainty in 
the design of the structural strength. As a result, the reliability of the design will be 
decreased which leads to the risk of premature failure. This kind of risk is borne by the 
contractor if it would cause a sizable premium and a burden on the budget. This would 
complicate the handling strategy and budgeting road, given the uncontrolled rule vio-
lations have an uncertainty broad space due to loss of control boundaries. 

One of the main objectives of this LMSC is the ongoing maintenance activities in 
order to maintain the conditions, the capacity of the road network services that have 
been built so that it can meet the needs of users as well as users of the road. Through 
the work of maintaining the condition of existing roads to be kept in a steady state. 
Thus, the minimum level of service in accordance with the Minimum Service Stand-
ards, also the design life of the road can be met as well as the performance of the road 
will be restored to the initial condition at the time of construction. In order to maintain 
the service road, streamline maintenance of roads and ensuring the maintenance costs, 
we need a contract innovation such as performance-based contract, the expected imple-
mentation constraints that would be solved. 

2.2 Artificial Intelligence 

Interpretation and prediction data is one of the important things in a pavement manage-
ment system. Big sets of data into information without meaning only if no interpretation 
and the right and accurately prediction. In connection with this, we need a model that 
can provide a good approach to the process of interpretation. Data mining (DM) is a 
widely used approach to the interpretation of data in various disciplines. Through an 
approach to artificial intelligence (AI), DM has a huge potential to assist in the inter-
pretation and prediction [10]. Utilization of AI in a group of civil engineering science 
has been done by Terzi [11] to compile a predictive model pavement serviceability 
index (PSI) and surface distress index (SDI). Furthermore, Zhou [12] to develop models 
of geographic information system (GIS) road maintenance; the development of predic-
tive models of jet grouting [13]. In literature searches were performed, until now the 
approach to AI and DM techniques have not been developed for predictive modeling 
PI on LSMC. 
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Fig. 1. Development of Artificial Intelligence [13] 

Soft computing method performed by imitating the processes that found in nature, such 
as brain and natural selection [14]. Soft computing techniques allow the processing of 
data with uncertainly, imprecise and ambiguous. In the early mid-1960s, a new branch 
of computer science began to attract the attention of much of scientists. This new 
branch, known as AI, can be defined for the study of how to make computers able to 
push the quality of people jobs to get better. To achieve these objectives, the computer 
developed by imitating human behavior. In 1970 AI is more focused on the develop-
ment of expert systems are designed to support decision-making through opinions of 
experts computed. Then, in the 1990s there was a shift of AI development, that is stud-
ying the various issues directly from the data [15]. Until now AI continues to grow and 
includes several methods and solutions across a science. In figure 1 we can see the 
development of AI in various areas of science. AI development began in 1970 is grow-
ing, characterized by the melting of numeric and symbolic approaches are complemen-
tary. 

The development of the information technology industry is very fast, scientific data 
collection was growing rapidly. Databases in large size is not a problem if it can take 
advantage of computer technology with a range of major applications and supporters. 
All data has been collected and stored in a database that can either be a very valuable 
knowledge that can be used to support making decision and optimization of an action. 
Classical statistics have limitations to doing the data analysis with a large number or 
when the function of the complex relationship between the variable data. To overcome 
these limitations, need to develop tools of computer-based data analysis with greater 
capabilities and automatic [16]. This field is formally defined as knowledge discovery 
from databases (KDD). Wang [17] mentions in its development is increasingly recog-
nized by the term KDD DM. Furthermore, in this dissertation, DM terminology is often 
used as a synonym of KDD.  
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2.3 Data Mining 

Understanding of scientific fields plays an important role in the success of designing 
algorithms DM. The database was only a set of data without meaning if it is not done 
with the right algorithm approach [18]. Furthermore, Fu also said that the results of a 
review conducted in the last few years, the ability of DM growing in a particular domain 
and depends on the number of researchers who continuously develop specific algo-
rithms. In the simple case, science can help identify the right features for modeling the 
underlying data compilation and database Scientific knowledge can also help design 
the business objectives that can be achieved using in-depth analysis of the data base. 

One of the steps in developing the model prediction performance of the road pave-
ment management system is processing the road condition data in a process to establish 
a data mining KDD poverty. DM is combined logically with the knowledge of the data, 
and statistical analyzes were developed in the knowledge business or a process that uses 
statistical techniques, mathematics, artificial intelligence, imitation and machine-learn-
ing to extract and identify useful information to the associated knowledge of a variety 
of large databases, In the stages of KDD, DM algorithm equipped with the dataset that 
used for learing-phase, to be developed into a data-driven models. The model can be 
described as the relationship between inputs and outputs, which can provide useful in-
formation. DM operation in developing the model hereinafter referred to DM task. 

Fig. 2. DM Task 

DM task is based on the ability of DM in solving various problems with interpretation 
and other statistical operations on the data [19]. Depending on the type of pattern is 
found, DM task usually classified into two categories, predictive and descriptive. Pre-
dictive Approach doing inference on the data to predict the values of the unknown var-
iables of output, considering the known values of the input variables [20]. While the 
descriptive approach to characterize and summarize the general nature of the data in 
order to improve understanding and provision of information. The ability of DM task 
depends on the ability for users to do initial identification of a problem and goal com-
pletion.  
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DM classification task is one of the most frequently to used and have the purpose of 
finding a model that can classify data into each class. Trained model must be able to 
classify the data into groups based on the attributes of certain data [21]. The model used 
for classifying usually constructed using a set of supervised learning. Figure 1 summa-
rizes the DM task that is used today. Various task developed in DM largely based sta-
tistical approach applicable in general, so it is easy to understand description. Some 
DM algorithms are mostly used in the classification task on a decision tree, neural net-
works and support vector machines. The model ability to perform his function to clas-
sify with classification metric [22]. 

2.4 Pavement Maintenance Optimization 

Optimization approach in a pavement management system is needed to optimize the 
limited resources to meet the needs of road pavement maintenance that continues to 
grow. In a simple understanding, optimization involves a variety of resources to max-
imize or minimize the objective function of several binary, integer decision variables 
considering the inequality constraints. Modeling results generated through engine mod-
ifications iteration still need improvement so that the number of input variables formed 
by fuzzy approach is more accurate. Model optimization is not only used in the mainte-
nance of pavement but is also used to get the optimal planning, one of the models that 
exist today is the integration of genetic algorithm with a geographic information system 
the way to get the alignment is optimal [23] and [24]. 

An obstacle to the single-objective function is rare in road pavement management 
problems. In a pavement management system is precisely the various objectives and 
constraints to be resolved at the same time. The objective can be achieved more than 
one and contradictory, so it needs to be optimized simultaneously or by minimizing 
some objective function. Single-objective optimization approach, the idea of optimiza-
tion with the goal of minimizing or maximizing a certain objective value [25]. While 
the approach of Multi-Objective Optimization (MOO) is consists of two or more ob-
jective that needs to be optimized. In development MOO approach is more developed, 
due to various constraints and objectives more dynamic. MOO approach can be used to 
perform flexible pavement optimization with overload and can be developed with a 
variety of the others approaches [26]. 

3 Methodology 

The basic principle of LSMC is to maintain the serviceability level of the pavement 
with the available resources and budget. To obtain a good result, the policy maker effi-
ciently utilizes the existing resources, by optimizing the equipment, materials, person-
nel, methods, and costs. Moreover, policy maker can also plan a cost-effective and ef-
ficient method by considering the priorities and the schedule of routine maintenance, 
major rehabilitation and or reconstruction. But when faced with the extensive national 
road network and its constraints, this method of optimizing is considered as a difficult 
task. A systematic and well-concept effort is needed so that business-process 
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maintenance management can run smoothly and measurable. The systematic process 
can be started with the identification of the problem, pavement performance prediction, 
deterministic formulation, and optimization process itself. 

3.1 Performance Index Prediction 

One of the basic issue in pavement management system is the development of per-
formance or deterioration prediction models. Several performance prediction models 
have been proposed over the years, some of which are simple and others more complex. 
The success of a maintenance management process in LSMC depends on the perfor-
mance prediction, executed by the system. To enhance the performance of PMS, suc-
cessful prediction of pavement performance is of primary importance. The researcher 
will conduct the PI prediction models based on Support Vector Machines (SVM), 
which are empirical (data-driven) methods, while the occurrence of the fatigue cracking 
was predicted by a mechanistic-empirical procedure. SVM is one of them popular 
method approach in Data Mining (DM). DM aims at the extraction of useful knowledge 
from raw data and it is receiving an increasing attention by the both the research com-
munity and industry. Indeed, many case studies suggest that companies are increasingly 
investigating the potential of DM technology to deliver competitive advantage [27]. 
The success of the development of the IRI model can be used to use the existing data 
to support the management of the road network with the Pavement Management Sys-
tem in the road network of West Java [26].  Then, with SVM approach, IRI prediction 
is implemented to separate the road networks which affected by the normal load and 
overload. The model shows a great influence of the truck overloads identified on the 
road network evaluated [26]. DM in R-Project for statistical computing (R-Tools) is an 
open-source computational environment and high-level language that integrates pow-
erful statistical and graphical features for data. R-Tools adopts a very flexible and ob-
ject-oriented design [10]. The tool can be easily extended by the creation of packages. 
PI prediction model was developed from rminer library with the inclusion of several 
variables such as crack, pothole, and rutting. 

3.2 Deterministic Formulations.  

This study has a multi-objective, namely maximizing level of service as measured by 
the PI and minimize the cost of maintenance. Further, the model developed by including 
the variables of overload and life cycle cost in a multi-year budget. 

3.3 Performance Index Maximization and Maintenance Cost Minimization  

As described in pavement condition section, a smaller value of PI is indicated better 
road performance, as written in (Eq. 1). In addition to maximizing serviceability level 
road with a target value of PI biggest, the agency also should minimize the budget that 
will be used for maintenance costs. In the (Eq. 2), it is described that the budget used 
for the maintenance of any treatment depends on the unit cost multiplied by the length 
of the segment roads. 

Proceedings ITISE 2018. Granada, 19-21 September, 2018. 451



 Maximize:! "
∑ $%&
%'(

) ∗ ∑ (,- ∗ ∑ ./-0"102" ∗ 3-0)5
-2" ≥ 	89:;8<:=>                  (1) 

 Minimize: ∑ 05
-2" ∑ @-0 ∗ 3-0102"  ≤ B  (2) 

Where 
,-= distance weight parameter to pavement segment i 
C= total number of pavement segment of the network 
D= total number of pavement management treatment options 
E= type of treatment options 
./-0"= PI value one year later for treatment t applied to pavement segment i 
3-0= if treatment t selected to pavement segment i 
89:;8<:=>= predefined pavement network average PI level 
F-0= cost parameter of treatment t selected to pavement segment i 
B= budget level for pavement LSMC 

4 Experiment and Discussion 

As the case study, the national road network in the Metropolitan 1 Jakarta – Indonesia 
is selected. The road network in Metropolitan 1 has a fairly complete characteristic. 
The northern part is characterized by the presence of the northern corridor of Java Island 
that serves as the main transportation lines and this corridor is passed by all types of 
vehicles. West Java's northern coast line connecting the port city of Jakarta with other 
cities in Java such as Cirebon, Semarang and Surabaya. In addition, there is south cor-
ridor marked by big city transportation character.   

4.1 PI Prediction Model 

Using DM with SVM model will result in predictive PI value obtained for each road 
segment on the national road network in Metropolitan 1 Jakarta. In this work, we used 
the rminer package of the R tool to train the SVM model. For each model, a total of 
1.000 runs of a 20 cross validation procedure were applied. The predictive results 
(measured over unseen data) are shown in terms of observed versus predicted scatter-
plots. In such scatterplots, the better the predictions, the closer they are to the diagonal 
line (perfect model). Figure 3 the scatterplots of PI predictive models, revealing a good 
fit.  

Proceedings ITISE 2018. Granada, 19-21 September, 2018. 452



 
           a. Learning                                    b. validation stage 

Fig. 3. Target PI values versus SVM PI outputs 

Figure 3 (a) is some scatterplots showing the results of the learning stage modelling 
learning stage with total amount of 1100 data, and Figure 3 (b) is an iteration for vali-
dation stage. The computed regression error metrics, in terms of the Mean Absolute 
Deviation (MAD) 0.62 ± 0.01, Root Mean Squared Error (RMSE) 0.72 ± 0.02 and co-
efficient of determination (R2) 0.89 ± 0.02. The lower the MAD and RMSE values, the 
better the predictive model, while a perfect model should have an R2 value close to 1.0. 
The results are presented in terms of the average of the runs and with the respective 
95% confidence intervals according to a t-student distribution. Analyzing the results it 
is clear that a good fit was achieved by the SVMs model. 

4.2 The Developed Optimization Model  

Stochastic Optimization approach can be used to determine the model of Pareto Solu-
tion to obtain the optimization of PI value and the maintenance costs. The post-optimi-
zation decision making, or the methods used to choose the final solution are also illus-
trated by the model application. In this research, the optimization is conducted for var-
ious maintenance scenarios. The optimal maintenance programs are selected by using 
the Pareto approach. Pareto approach is an approach to choosing the pattern of mainte-
nance with the closest distance to the axis 0 (Fig. 4).  

In the optimization phase, the maintenance scenario is performed by iteration, uti-
lizing the tools provided by the R-Tools by performing simulations tiered generation. 
Maintenance Scenario is conducted gradually refers to the DGH standard scenario, in 
sequence and then combined to achieve the optimum point is called the Pareto optimal-
ity and the shortest normalized distance. 

In this optimization stages, the scenario maintenance is performed by iterating uti-
lizing the tools provided by R-tools by conducting simulation tiered generation. Sce-
nario maintenance done gradually consecutively then combined to achieve the optimum 
point is called Pareto optimality. The pattern of Pareto optimization approach is done 
by transformation with the first generation. This is consistent with Pareto's theory, that 
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a small percentage (20%) of the causes of the problems giving a potential settlement of 
the majority (80%) issues. In the optimization of road maintenance, known indicator 
value is the IRI. Expected by selecting the maintenance scenario that became a group-
based index of Pareto, the pattern of maintenance costs being able to read the movement 
of the overall value of PI.  

 
Fig. 4. Pareto Optimality 

To simplify the optimization scenario in this research approach road conditions with 4 
types of handling LSMC. Maintenance chose to achieve the best PI and use the availa-
ble budget. With Pareto approach provided by optimx on R, obtained pattern mainte-
nance activities of each segment and the prediction value predicted PI on each segment. 
Estimated value of PI obtained in LSMC period before (original) and after optimization 
(Opt1, Opt2, Opt3) can be seen in figure 5. 

 
Fig. 5. PI optimization 

Simulations carried out by iterating dynamically linked with the performance predic-
tion model part way through iteration SVM models. The second main part is mutually 
connected and controlled with the subject equation (1) and (2). PI value to be come to 
a target in the simulation is the average value of PI most optimal road network with due 
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regard to the minimum limit value PI on each segment. Iteration models show that the 
necessary steps to achieve this jump. 

5 Conclusion  

This study developed a model of multi-objective optimization in LSCM to generate an 
optimal scenario of pavement maintenance. A two-objective optimization model con-
siders maximum PI and minimum maintenance cost. Both of these objectives are con-
sidered to be achieved simultaneously. Constraints faced is road deterioration that can 
accelerate the decline in the level of PI. Through the DM approach to obtain predicted 
PI, maintenance optimization is then performed by maintenance type that is received in 
each group of highway networks. The results showed the load factor group with pre-
ventive pavement maintenance scenario produces the most optimal financing.  
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